ÌâÄ¿ÄÚÈÝ
15£®ÍÖÔ²ÓëË«ÇúÏßÓÐÐí¶àÓÅÃÀµÄ¶Ô³ÆÐÔÖÊ£®¶ÔÓÚÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÓÐÈçÏÂÃüÌ⣺ABÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ²»Æ½ÐÐÓÚ¶Ô³ÆÖáÇÒ²»¹ýÔµãµÄÏÒ£¬MΪABµÄÖе㣬ÔòkOM•kAB=-$\frac{b^2}{a^2}$£¬Îª¶¨Öµ£®ÄÇô¶ÔÓÚË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©ÔòÓÐÃüÌ⣺ABÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ²»Æ½ÐÐÓÚ¶Ô³ÆÖáÇÒ²»¹ýÔµãµÄÏÒ£¬MΪABµÄÖе㣬ÔòkOM•kAB=¶¨Öµ$\frac{b^2}{a^2}$£®£¨ÔÚºáÏßÉÏÌîÉÏÕýÈ·µÄ½áÂÛ£©²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®·ÖÎö ¸ù¾ÝÌâÒ⣬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x0£¬y0£©£¬¿ÉµÃMµÄ×ø±ê£¬ÒÔ¼°kOM¡¢kAB£¬½ø¶ø¿ÉµÃkOM•kABµÄ±í´ïʽ£¬½«½«A¡¢B×ø±ê´úÈëË«ÇúÏß·½³Ì£¬Óɵã²î·¨·ÖÎö¿ÉµÃ£º$\frac{{£¨{x_1}-{x_2}£©£¨{x_1}+{x_2}£©}}{a^2}=\frac{{£¨{y_1}-{y_2}£©£¨{y_1}+{y_2}£©}}{b^2}$£¬
½â´ð ½â£ºkOM•kABΪ¶¨Öµ£¬ÇÒÆäֵΪkOM•kAB=$\frac{b^2}{a^2}$£®
Ö¤Ã÷£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x0£¬y0£©£¬ÔòÓÐ$\left\{\begin{array}{l}{x_0}=\frac{{{x_1}+{x_2}}}{2}\\{y_0}=\frac{{{y_1}+{y_2}}}{2}.\end{array}\right.$¡£¨3·Ö£©
kOM=$\frac{{y}_{0}}{{x}_{0}}$=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$£¬kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$£¬¼´kOM•kAB=$\frac{{£¨{y_1}-{y_2}£©£¨{y_1}+{y_2}£©}}{{£¨{x_1}-{x_2}£©£¨{x_1}+{x_2}£©}}$£¬
½«A¡¢B×ø±ê´úÈëË«ÇúÏß·½³Ì$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1¿ÉµÃ£º
$\frac{{{x_1}^2}}{a^2}-\frac{{{y_1}^2}}{b^2}=1$¢Ù
$\frac{{{x_2}^2}}{a^2}-\frac{{{y_2}^2}}{b^2}=1$¢Ú£®¡£¨5·Ö£©
¢Ù-¢ÚµÃ£º$\frac{{{x_1}^2-{x_2}^2}}{a^2}=\frac{{{y_1}^2-{y_2}^2}}{b^2}$
¼´$\frac{{£¨{x_1}-{x_2}£©£¨{x_1}+{x_2}£©}}{a^2}=\frac{{£¨{y_1}-{y_2}£©£¨{y_1}+{y_2}£©}}{b^2}$£¬¡£¨9·Ö£©
$\frac{{£¨{y_1}-{y_2}£©£¨{y_1}+{y_2}£©}}{{£¨{x_1}-{x_2}£©£¨{x_1}+{x_2}£©}}=\frac{b^2}{a^2}$£¬¼´kOM•kAB=$\frac{b^2}{a^2}$£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éË«ÇúÏßµÄÐÔÖÊ£¬Éæ¼°Àà±ÈÍÆÀíµÄÔËÓ㬽â´ðʱҪÁªÁ¢Ö±ÏßÓëË«ÇúÏߵķ½³Ì£¬ÀûÓõã²î·¨·ÖÎöÇó½â£®
A£® | 60¡ã | B£® | 45¡ã | C£® | 120¡ã | D£® | 30¡ã |
A£® | -2excosx | B£® | -2exsinx | C£® | 2ex£¨sinx-cosx£© | D£® | 2ex£¨sinx+cosx£© |