题目内容
5.解方程组$\left\{\begin{array}{l}{{x}^{2}-{y}^{2}=5(x+y)}\\{{x}^{2}+xy+{y}^{2}=43}\end{array}\right.$.分析 x2-y2=5(x+y),可得x+y=0或x-y=5.分别代入x2+xy+y2=43解出即可.
解答 解:∵x2-y2=5(x+y),∴x+y=0或x-y=5.
当x+y=0时,把y=-x代入x2+xy+y2=43可得x2=43,解得$\left\{\begin{array}{l}{x=\sqrt{43}}\\{y=-\sqrt{43}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\sqrt{43}}\\{y=\sqrt{43}}\end{array}\right.$.
当x-y=5时,把y=x-5代入x2+xy+y2=43可得x2-5x-6=,解得$\left\{\begin{array}{l}{x=6}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-6}\end{array}\right.$.
综上可得原方程组的解为$\left\{\begin{array}{l}{x=\sqrt{43}}\\{y=-\sqrt{43}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\sqrt{43}}\\{y=\sqrt{43}}\end{array}\right.$,$\left\{\begin{array}{l}{x=6}\\{y=1}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-1}\\{y=-6}\end{array}\right.$.
点评 本题考查了方程组的解法,考查了计算能力,属于中档题.
练习册系列答案
相关题目