题目内容
【题目】某市劳动部门坚持就业优先,采取多项措施加快发展新兴产业,服务经济,带来大量就业岗位,据政府工作报告显示,截至2018年末,全市城镇新增就业21.9万人,创历史新高.城镇登记失业率为4.2%,比上年度下降0.73个百分点,处于近20年来的最低水平.
(1)现从该城镇适龄人群中抽取100人,得到如下列联表:
失业 | 就业 | 合计 | |
男 | 3 | 62 | 65 |
女 | 2 | 33 | 35 |
合计 | 5 | 95 | 100 |
根据联表判断是否有99%的把握认为失业与性别有关?
附:
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
(2)调查显示,新增就业人群中,新兴业态,民营经济,大型国企对就业支撑作用不断增强,其岗位比例为,现从全市新增就业人群(数目较大)中抽取4人,记抽到的新兴业态的就业人数为X,求X的分布列和数学期望.
【答案】(1)没有的把握认为失业与性别有关;(2)分布列见解析,.
【解析】
(1)将数据代入公式中计算,并与比较大小即可判断;
(2)分析可得,由二项分布的概率公式求得概率,即可得到分布列,进而求解期望.
(1)根据联表:
,
所以没有的把握认为失业与性别有关.
(2)由题意知:,
X的取值为0,1,2,3,4,
;;
;;
,
所以X的分布列为:
X | 0 | 1 | 2 | 3 | 4 |
P |
所以.
【题目】大学就业部从该大学2018年已就业的大学本科毕业生中随机抽取了100人进行月薪情况的问卷调查,经统计发现,他们的月薪收入在3000元到10000元之间,具体统计数据如表:
月薪(百万) | |||||||
人数 | 2 | 15 | 20 | 15 | 24 | 10 | 4 |
(1)经统计发现,该大学2018届的大学本科毕业生月薪(单位:百元)近似地服从正态分布,其中近似为样本平均数(每组数据取区间的中点值).若落在区间的左侧,则可认为该大学本科生属“就业不理想”的学生,学校将联系本人,咨询月薪过低的原因,为以后的毕业生就业提供更好的指导意见.现该校2018届大学本科毕业生张茗的月薪为3600元,试判断张茗是否属于“就业不理想”的学生;
(2)①将样本的频率视为总体的概率,若大学领导决定从大学2018届所有本毕业生中任意选取5人前去探访,记这5人中月薪不低于8000元的人数为,求的数学期望与方差;
②在(1)的条件下,中国移动赞助了大学的这次社会调查活动,并为这次参与调查的大学本科毕业生制定了赠送话费的活动,赠送方式为:月薪低于的获赠两次随机话费,月薪不低于的获赠一次随机话费;每次赠送的话费及对应的概率分别为:
赠送话费(单位:元) | 50 | 100 | 150 |
概率 |
则张茗预期获得的话费为多少元?(结果保留整数)