题目内容
【题目】设函数f(x)=lg(2x﹣3)的定义域为集合M,函数g(x)= 的定义域为集合N.求:
(1)集合M,N;
(2)集合M∪N,RN.
【答案】
(1)解:由题意2x﹣3>0 故{x|x> };
因为 ,故N={x|x≥3}
(2)解:由(1)可知M∪N={x|x> },RN={x|x<3}
【解析】(1)对数的真数大于0求出集合M;开偶次方的被开方数非负且分母不等于0,求出集合N;(2)直接利用集合的运算求出集合M∪N,CRN.
【考点精析】掌握交、并、补集的混合运算和函数的定义域及其求法是解答本题的根本,需要知道求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法;求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.
练习册系列答案
相关题目