题目内容

如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.

(Ⅰ)求证:PB⊥DM;
(Ⅱ)求CD与平面ADMN所成的角
(I)见解析.(II).
本题主要考查空间线线、线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力.
(I)欲证PB⊥DM,可先证PB⊥平面ADMN,根据直线与平面垂直的判定定理可知只需证PB与平面ADMN内两相交直线垂直,而AN⊥PB,AD⊥PB,满足定理条件;
(II)取AD的中点G,连接BG、NG,得到 BG∥CD,从而BG与平面ADMN所成的角和CD与平面ADMN所成的角相等,根据线面所成角的定义可知∠BGN是BG与平面ADMN所成的角,在Rt△BGN中求出此角的正弦值即可.
解:(I)因为的中点,,所以.
因为平面,所以,从而平面.
因为平面,所以.
(II)取的中点,连结,则
所以与平面所成的角和与平面所成的角相等.
因为平面,所以与平面所成的角.
中,.
与平面所成的角是.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网