题目内容

(本小题满分9分)
如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=3,BC=4,AB=5,点D是AB的中点.

(1)求证AC⊥BC1
(2)求证AC1∥平面CDB1
见解析。
(1)通过证明AC⊥平面BCC1B1即可.
(2)证明DE//AC1即可.
证明:(1)∴CC1⊥底面ABC
∴CC1⊥AC……………………………………1分
∴AC=3  BC=4  AB=5
∴AC2+BC2=AB2
∴AC⊥BC……………………………………2分
∴AC⊥平面BCC1B1…………………………3分
∴AC⊥BC1……………………………………4分
(2)设BC1∩B1C=E连接DE
∵BCC1B1是矩形 ∴E是BC1的中点…………5分
又D是AB的中点,在△ABC1中,DE∥AC1……6分
又AC1平面CDB1,  DE平面CDB1
∴AC1∥平面CDB1……………………………8分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网