题目内容
17.一个几何体的三视图如图所示,则该几何体的体积是( )A. | 64 | B. | 72 | C. | 80 | D. | 112 |
分析 由三视图可知该几何体为上部是一四棱锥,高为3,下部为正方体,边长为4的组合体.分别求得体积再相加.
解答 解:由三视图可知该几何体为上部是一四棱锥,下部为正方体的组合体.四棱锥的高h1=3,正方体棱长为4
V正方体=Sh2=42×4=64,V四棱锥=$\frac{1}{3}$Sh1=$\frac{1}{3}×{4}^{2}×3$=16,
所以V=64+16=80.
故选:C.
点评 本题考查三视图求几何体的体积,考查计算能力,空间想象能力,三视图复原几何体是解题的关键.
练习册系列答案
相关题目
2.等差数列{an}中,a1>0,d<0,S3=S11,则Sn中的最大值是( )
A. | S7 | B. | S7或S8 | C. | S14 | D. | S8 |
6.不等式x2-2x+1≥a2-2a对任意实数x恒成立,则实数a的取值范围为( )
A. | (-∞,0]∪[2,+∞) | B. | (-∞,-2]∪[0,+∞) | C. | [0,2] | D. | [-2,0] |
7.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)现计划在这次场外调查中按年龄段选取6名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |