题目内容
【题目】已知函数.
(1)讨论的单调性;
(2)令函数,若函数有且只有一个零点,试判断与3的大小,并说明理由.
【答案】(1)见解析;(2)见解析
【解析】
(1)先求导,然后讨论的大小,继而求出函数的单调性
(2)对函数求二阶导数,求出函数的单调性,然后结合零点得到关于的表达式,构造新函数后运用导数确定新函数的单调性,继而得出关于零点问题
(1),
①当,即时,时,,在上单调递增.
②当,即时,时,
时,.
所以在上单调递减,在单调递增.
(2)函数,
则,令
则,所以在上单调递增,
当且时,,时,
所以在上有唯一零点,
当时,,时,,所以为的最小值.
由已知函数有且只有一个零点,则,
所以,
,
令,
,
所以,,,,
所以在单调递减,
因为,,
所以在上有一个零点,在无零点,
若在有零点必小于3,
综上:.
练习册系列答案
相关题目