题目内容
【题目】(本小题满分12分,(1)小问5分,(2)小问7分)
如图,椭圆的左、右焦点分别为过的直线交椭圆于两点,且
(1)若,求椭圆的标准方程
(2)若求椭圆的离心率
【答案】(1);(2)
【解析】
试题解析:(1)本题中已知椭圆上的一点到两焦点的距离,因此由椭圆定义可得长轴长,即参数的值,而由,应用勾股定理可得焦距,即的值,因此方程易得;(2)要求椭圆的离心率,就是要找到关于的一个等式,题中涉及到焦点距离,因此我们仍然应用椭圆定义,设,则,,于是有,这样在中求得,在中可建立关于的等式,从而求得离心率.
(1)由椭圆的定义,
设椭圆的半焦距为c,由已知,因此
即
从而
故所求椭圆的标准方程为.
(2)解法一:如图(21)图,设点P在椭圆上,且,则
求得
由,得,从而
由椭圆的定义,,从而由,有
又由,知,因此
于是
解得.
解法二:如图由椭圆的定义,,从而由,有
又由,知,因此,
,从而
由,知,因此
练习册系列答案
相关题目