题目内容

6.如图,圆O与离心率为$\frac{{\sqrt{3}}}{2}$的椭圆T:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)相切于点M(0,1).
(1)求椭圆T与圆O的方程.
(2)过点M引直线l(斜率存在),若直线l被椭圆T截得的弦长为2.①求直线l的方程;②设P(x,y)为圆O上的点,求点P到直线l的最大距离.

分析 (1)由切点可得b=1,即圆的半径为1,可得圆的方程;再由离心率公式和a,b,c的关系,可得a=2,进而得到椭圆方程;
(2)①设直线l:y=kx+1,代入椭圆方程,运用韦达定理和弦长公式,计算可得k,进而得到直线方程;
②根据对称性可知P到直线l的距离最大为圆心到直线的距离加上半径,由点到直线的距离公式,计算即可得到.

解答 解:(1)由题意可知,圆的半径r=1,
∴圆O的方程为:x2+y2=1,
在椭圆T中,b=1,又$e=\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,a2=b2+c2
∴a2=4,b2=1,
所以椭圆的标准方程为$\frac{x^2}{4}+{y^2}=1$;
(2)①设直线l:y=kx+1,
设l与椭圆T交于M(x1,y1),N(x2,y2),
∴$\left\{\begin{array}{l}y=kx+1\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$消去y得:(1+4k2)x2+8kx=0,
∴${x_1}+{x_2}=\frac{-8k}{{1+4{k^2}}},{x_1}{x_2}=0$,
∴弦长$|{MN}|=\sqrt{(1+{k^2})[{{({x_1}+{x_2})}^2}-4{x_1}{x_2}]}=\sqrt{1+{k^2}}\frac{{|{8k}|}}{{1+4{k^2}}}=2$,
解得:$k=±\frac{{\sqrt{2}}}{4}$,
∴直线l的方程为:$y=±\frac{{\sqrt{2}}}{4}x+1$;
②根据对称性可知点P(x,y)到直线l:$y=\frac{{\sqrt{2}}}{4}x+1$或$y=-\frac{{\sqrt{2}}}{4}x+1$的距离相等,
故点P(x,y)到直线l的最大距离$d=\frac{1}{{\sqrt{\frac{1}{8}+1}}}+1=\frac{{2\sqrt{2}}}{3}+1$.

点评 本题考查椭圆和圆的方程的求法,同时考查直线和圆相切的条件,以及直线和椭圆相交的弦长公式,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网