题目内容
14.某校对某班50名学生进行了作业量多少的调查,得到如下列联表(单位:名):喜欢玩电脑游戏与认为作业多少列联表认为作业多 | 认为作业不多 | 总计 | |
喜欢玩电脑游戏 | 18 | 9 | 27 |
不喜欢玩电脑游戏 | 8 | 15 | 23 |
总计 | 26 | 24 | 50 |
附参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 根据列联表中的数据,代入求观测值的公式,求出观测值,把观测值同临界值进行比较,得到能在犯错误的概率不超过0.025的前提下认为有关系.
解答 解:能认为有关系…(2分)
∵K2=$\frac{50(18×15-9×8)^{2}}{26×27×23×24}$≈5.585>5.024
∴能在犯错误的概率不超过0.025的前提下认为有关系 …(12分)
点评 本题考查独立性检验的应用,解题的关键是正确求出这组数据的观测值,数字运算的过程中数字比较多,不要出错.
练习册系列答案
相关题目
5.下列各点中与(2,$\frac{π}{6}$)不表示极坐标系中同一个点的是( )
A. | (2,-$\frac{11}{6}$π) | B. | (2,$\frac{13}{6}$π) | C. | (2,$\frac{11}{6}$π) | D. | (2,$\frac{-23}{6}$π) |
9.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+1)=f(-x+3),f(4)=1,则不等式f(x)<ex的解集为( )
A. | (-∞,e4) | B. | (e4,+∞) | C. | (-∞,0) | D. | (0,+∞) |
3.设m,n为两条不同的直线,α、β为两个不同的平面.下列命题中,正确的是( )
A. | 若m,n与α所成的角相等,则m∥n | B. | 若α⊥β,m∥α,则m⊥β | ||
C. | 若m⊥α,m∥β,则α⊥β | D. | 若m∥α,n∥α,则m∥n |