题目内容
设数列{an}前n项和为Sn,点均在直线上.
(1)求数列{an}的通项公式;
(2)设,Tn是数列{bn}的前n项和,试求Tn;
(3)设cn=anbn,Rn是数列{cn}的前n项和,试求Rn.
(1)求数列{an}的通项公式;
(2)设,Tn是数列{bn}的前n项和,试求Tn;
(3)设cn=anbn,Rn是数列{cn}的前n项和,试求Rn.
(1)(2)(3)
试题分析:(1)将点代入直线方程整理可得,用公式可推导出。(2)由可得,可证得数列为等比数列 ,用等比数列的前项和公式可求其前项和。(3)因为等差等比,所以用错位相减法求数列的前项和。
试题解析:(1)依题意得,即. (1分)
当时,. (2分)
当时, ; (4分)
所以. (5分)
(2)由(1)得, (6分)
由, (7分)
由,可知{bn}为首项为9,公比为9的等比数列. (8分)
故. (9分)
(3)由(1)、(2)得 (10分)
(11分)
(12分)
(13分)
(14分)项和;4错位相减法求数列的前项和。
练习册系列答案
相关题目