ÌâÄ¿ÄÚÈÝ
9£®ÔÚÉϺ£ÊÀ²©»áÆڼ䣬Сºì¼Æ»®¶ÔÊÂÏÈÑ¡¶¨µÄ10¸ö³¡¹Ý½øÐвιۣ®ÔÚËýÑ¡¶¨µÄ10¸ö³¡¹ÝÖУ¬ÓÐ4¸ö³¡¹Ý·Ö²¼ÔÚAÇø£¬3¸ö³¡¹Ý·Ö²¼ÔÚBÇø£¬3¸ö³¡¹Ý·Ö²¼ÔÚCÇø£®ÒÑÖªAÇøµÄÿ¸ö³¡¹ÝµÄÅŶÓʱ¼äΪ2Сʱ£¬BÇøºÍCÇøµÄÿ¸ö³¡¹ÝµÄÅŶÓʱ¼äΪ1Сʱ£®²Î¹ÛǰСºìÒòÊÂÖ»ÄÜ´ÓÕâ10¸ö³¡¹ÝÖÐËæ»úÑ¡¶¨3¸ö³¡¹Ý½øÐвιۣ®£¨¢ñ£©ÇóСºìÿ¸öÇø¶¼²Î¹Û1¸ö³¡¹ÝµÄ¸ÅÂÊ£»
£¨¢ò£© ÉèСºìÅŶÓʱ¼ä×ܺÍΪX£¨Ð¡Ê±£©£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE£¨X£©£®
·ÖÎö £¨¢ñ£©Çó³ö´Ó10¸ö³¡¹ÝÖÐÑ¡Èý¸öµÄ»ù±¾Ê¼þµÄ×ÜÊý£¬Ð¡ºìÿ¸öÇø¶¼²Î¹ÛÒ»¸ö³¡¹ÝµÄʼþ°üº¬µÄ»ù±¾Ê¼þÊý£¬È»ºóÇó½â¹ÊСºìÿ¸öÇø¶¼²Î¹Û1¸ö³¡¹ÝµÄ¸ÅÂÊ£®
£¨¢ò£©XµÄÈ¡Öµ¿ÉÄÜÊÇ3£¬4£¬5£¬6£¬·Ö±ð¶ÔӦûÓÐʼþ²Î¹ÛAÇø³¡¹Ý£¬²Î¹ÛÒ»¸öAÇø³¡¹Ý£¬²Î¹ÛÁ½¸öAÇø³¡¹Ý£¬²Î¹ÛÈý¸öAÇø³¡¹Ý£¬·Ö±ðÇó³ö¸ÅÂʵõ½·Ö²¼ÁУ¬È»ºóÇó½âÆÚÍû¼´¿É£®
½â´ð ½â£º£¨¢ñ£©´Ó10¸ö³¡¹ÝÖÐÑ¡Èý¸ö£¬»ù±¾Ê¼þµÄ×ÜÊýΪ${C}_{10}^{3}=120$¸ö£¬
Сºìÿ¸öÇø¶¼²Î¹ÛÒ»¸ö³¡¹ÝµÄʼþ°üº¬µÄ»ù±¾Ê¼þÊýΪ${C}_{4}^{1}{C}_{3}^{1}{C}_{3}^{1}=36$£¬
¹ÊСºìÿ¸öÇø¶¼²Î¹Û1¸ö³¡¹ÝµÄ¸ÅÂÊΪ$\frac{36}{120}=\frac{3}{10}$£®
£¨¢ò£©XµÄÈ¡Öµ¿ÉÄÜÊÇ3£¬4£¬5£¬6£¬·Ö±ð¶ÔӦûÓÐʼþ²Î¹ÛAÇø³¡¹Ý£¬²Î¹ÛÒ»¸öAÇø³¡¹Ý£¬²Î¹ÛÁ½¸öAÇø³¡¹Ý£¬²Î¹ÛÈý¸öAÇø³¡¹Ý£¬
$P£¨X=3£©=\frac{2{C}_{3}^{3}+2{C}_{3}^{1}{C}_{3}^{2}}{{C}_{10}^{3}}$=$\frac{1}{6}$£¬$P£¨X=4£©=\frac{{C}_{4}^{1}{C}_{6}^{2}}{{C}_{10}^{3}}$=$\frac{1}{2}$£¬
$P£¨X=5£©=\frac{{C}_{4}^{2}{C}_{6}^{1}}{{C}_{10}^{3}}$=$\frac{3}{10}$£¬$P£¨X=6£©=\frac{{C}_{4}^{3}}{{C}_{10}^{3}}$=$\frac{1}{30}$£®
ËùÒÔXµÄ·Ö²¼ÁÐΪ£º
X | 3 | 4 | 5 | 6 |
P | $\frac{1}{6}$ | $\frac{1}{2}$ | $\frac{3}{10}$ | $\frac{1}{30}$ |
µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÒÔ¼°ÆÚÍûµÄÇ󷨣¬¿¼²é¹Åµä¸ÅÐ͸ÅÂʵÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®
A£® | £¨-¡Þ£¬1£© | B£® | [0£¬1£© | C£® | £¨-¡Þ£¬0] | D£® | £¨1£¬+¡Þ£© |
A£® | 2$\sqrt{5}$ | B£® | $\sqrt{5}$»ò2$\sqrt{5}$ | C£® | $\sqrt{15}$ | D£® | ÒÔÉ϶¼²»¶Ô |
µ¥¼Ûx£¨Ôª£© | ¡¡¡¡¡¡¡¡8 | ¡¡¡¡¡¡8.2 | ¡¡¡¡¡¡8.4 | ¡¡¡¡¡¡8.6 | ¡¡¡¡¡¡8.8 | ¡¡¡¡¡¡9 |
ÏúÁ¿y£¨¼þ£© | ¡¡¡¡¡¡90 | ¡¡¡¡¡¡84 | ¡¡¡¡¡¡83 | ¡¡¡¡¡¡80 | ¡¡¡¡¡¡¡¡75 | ¡¡¡¡¡¡68 |
£¨¢ò£©Ô¤¼ÆÔÚ½ñºóµÄÏúÊÛÖУ¬ÏúÁ¿Óëµ¥¼ÛÈÔÈ»·þ´Ó£¨¢ñ£©ÖеĹØϵ£¬ÇҸòúÆ·µÄ³É±¾ÊÇ3.5Ôª/¼þ£¬ÎªÊ¹¹¤³§»ñµÃ×î´óÀûÈ󣬸òúÆ·µÄµ¥¼ÛÓ¦¶¨Îª¶àÉÙÔª£¿£¨ÀûÈó=ÏúÊÛÊÕÈë-³É±¾£©£®
£¨²Î¿¼¹«Ê½ÓëÊý¾Ý£º$\sum_{i=1}^{6}$xiyi=4066£¬$\sum_{i=1}^{6}$x${\;}_{i}^{2}$=434.2£¬$\sum_{i=1}^{6}$xi=51.$\sum_{i=1}^{6}$yi=480.$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£®£©