题目内容
【题目】在平面直角坐标系中,曲线的参数方程为,以原点0为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)若曲线方程中的参数是,且与有且只有一个公共点,求的普通方程;
(2)已知点,若曲线方程中的参数是,,且与相交于,两个不同点,求的最大值.
【答案】(1) 或(2)
【解析】
(1)利用公式直接把极坐标方程化为直角坐标方程,利用圆与圆相切,可以得到等式,求出的值;
(2)把曲线的参数方程代入曲线的直角坐标方程,得到一个一元二次方程,设与点,相对应的参数分别是,,利用一元二次方程根与系数关系,
求出的表达式,求出最大值。
解:(1),曲线的直角坐标方程为,
是曲线的参数,的普通方程为,
与有且只有一个公共点,或,
的普通方程为或
(2)是曲线的参数,是过点的一条直线,
设与点,相对应的参数分别是,,把,代入得,
,
当时,,
取最大值.
【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价: (单位:元/月)和购买总人数(单位:万人)的关系如表:
定价x(元/月) | 20 | 30 | 50 | 60 |
年轻人(40岁以下) | 10 | 15 | 7 | 8 |
中老年人(40岁以及40岁以上) | 20 | 15 | 3 | 2 |
购买总人数y(万人) | 30 | 30 | 10 | 10 |
(Ⅰ)根据表中的数据,请用线性回归模型拟合与的关系,求出关于的回归方程;并估计元/月的流量包将有多少人购买?
(Ⅱ)若把元/月以下(不包括元)的流量包称为低价流量包,元以上(包括元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联表,并通过计算说明是否能在犯错误的概率不超过的前提下,认为购买人的年龄大小与流量包价格高低有关?
定价x(元/月) | 小于50元 | 大于或等于50元 | 总计 |
年轻人(40岁以下) | |||
中老年人(40岁以及40岁以上) | |||
总计 |
参考公式:其中
其中
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |