题目内容
【题目】已知销售“笔记本电脑”和“台式电脑”所得的利润分别是P(单位:万元)和Q(单位:万元),它们与进货资金t(单位:万元)的关系有经验公式P= t和Q= .某商场决定投入进货资金50万元,全部用来购入这两种电脑,那么该商场应如何分配进货资金,才能使销售电脑获得的利润y(单位:万元)最大?最大利润是多少万元?
【答案】解:设用于台式电脑的进货资金为m万元,则用于笔记本电脑的进货资金为(50﹣m)万元,脑获得的利润为y=P+Q= (50﹣m)+ (0≤m≤50).
令u= ,则u∈[0,5 ],
则y=﹣ u2+ u+ =﹣ (u﹣4)2+ .
当u=4,即m=16时,y取得最大值为 .
所以当用于台式机的进货资金为16万元,用于笔记本的进货资金为34万元时,可使销售电脑的利润最大,最大为 万元
【解析】设用于台式电脑的进货资金为m万元,则用于笔记本电脑的进货资金为(50﹣m)万元,那么y=P+Q,代入可得关于x的解析式,利用换元法得到二次函数f(t),再由二次函数的图象与性质,可得结论..
练习册系列答案
相关题目
【题目】某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在下图中的两条线段上,该股票在30天内(包括30天)的日交易量Q(万股)与时间t(天)的部分数据如下表所示.
第t天 | 4 | 10 | 16 | 22 |
Q(万股) | 36 | 30 | 24 | 18 |
(1)根据提供的图象,写出该种股票每股交易价格P(元)与时间t(天)所满足的函数关系式;
(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式;
(3)在(2)的结论下,用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求出这30天中第几日交易额最大,最大值为多少?