题目内容
【题目】已知椭圆与抛物线共焦点,抛物线上的点M到y轴的距离等于,且椭圆与抛物线的交点Q满足.
(I)求抛物线的方程和椭圆的方程;
(II)过抛物线上的点作抛物线的切线交椭圆于、 两点,设线段AB的中点为,求的取值范围.
【答案】(1);(2).
【解析】试题分析:(1)将抛物线上的点到轴的距离等于和抛物线的定义相结合,可得,可得抛物线的方程,已知在椭圆中的值,由可得点Q的坐标,结合椭圆的定义可得椭圆的方程;(2)联立直线与抛物线的方程,结合其有一个交点可得关系式,联立直线与椭圆的方程根据椭圆与直线有2个交点即,得到关于不等式,解不等式可得的取值范围,由中点坐标公式及韦达定理可得,从而可得其范围.
试题解析:(1)∵抛物线上的点到轴的距离等于,
∴点M到直线的距离等于点到焦点的距离,
得是抛物线的准线,即,
解得,∴抛物线的方程为;
可知椭圆的右焦点,左焦点,
由得,又,解得,
由椭圆的定义得,
∴,又,得,
∴椭圆的方程为.
(2)显然, ,
由,消去,得,
由题意知,得,
由,消去,得,
其中,
化简得,
又,得,解得,
设,则<0,
由,得,∴的取值范围是.
【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验统计结果如下
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验次数 |
A | 甲 | 2次 | 6次 | 4次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,且不考虑洪涝灾害,请根据统计数据:
(1)求甲、乙、丙三地都恰为中雨的概率;
(2)考虑不同地区的干旱程度,当雨量达到理想状态时,能缓解旱情,若甲、丙地需中雨或大雨即达到理想状态,乙地必须是大雨才达到理想状态,记“甲、乙、丙三地中缓解旱情的个数”为随机变量,求的分布列和数学期望.
【题目】为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
优秀人数 | 非优秀人数 | 总计 | |
甲班 | |||
乙班 | 30 | ||
总计 | 60 |
(Ⅰ)根据题目完成列联表,并据此判断是否有的把握认为环保知识成绩优秀与学生的文理分类有关.
(Ⅱ)现已知, , 三人获得优秀的概率分别为, , ,设随机变量表示, , 三人中获得优秀的人数,求的分布列及期望.
附: ,
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |