题目内容
已知椭圆
的焦距为2,且过点
.
(1)求椭圆C的方程;
(2)设椭圆C的左右焦点分别为
,
,过点
的直线
与椭圆C交于
两点.
①当直线
的倾斜角为
时,求
的长;
②求
的内切圆的面积的最大值,并求出当
的内切圆的面积取最大值时直线
的方程.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240418347991155.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834815625.png)
(1)求椭圆C的方程;
(2)设椭圆C的左右焦点分别为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834830333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834846353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834846353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834877285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834908562.png)
①当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834877285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834939370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834955548.png)
②求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834971689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834971689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834877285.png)
(1)椭圆C的方程为
;(2)(1)
的长为
;(2)当
的内切圆的面积取最大值时直线
的方程为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835033724.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835049550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835064452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835095691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834877285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835111327.png)
试题分析:(1)由已知得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835142568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835158646.png)
(2)(1)联立椭圆与直线方程,由弦长公式可直接求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835049550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834877285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835189563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835205271.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240418352361189.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240418352511181.png)
利用均值不等式和函数单调性的性质可得当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835267604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835283615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835095691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835314567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834877285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835111327.png)
试题解析:(1)由已知,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835142568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835158646.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835392645.png)
故椭圆C的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835033724.png)
(2)①由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835439989.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835205271.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835485628.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240418355011259.png)
②设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834877285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835189563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240418355631089.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240418355791103.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835595436.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240418356101095.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240418352361189.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835095691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835657268.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240418356881701.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835283615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835657268.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835095691.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240418357972955.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835813605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835829361.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835844547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240418358601239.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835875890.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835891854.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835907491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835922517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835922775.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835938739.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835953319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835969429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835283615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835267604.png)
这时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835095691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835314567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041834877285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041835111327.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目