题目内容

如图,椭圆E:=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.

(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
(1)=1(2)存在定点M(1,0),
学生错解:解:(1)略
(2)由消去y得(4k2+3)x2+8kmx+4m2-12=0.
因为动直线l与椭圆E有且只有一个公共点P(x0,y0),所以m≠0且Δ=0,
即64k2m2-4(4k2+3)(4m2-12)=0,化简得4k2-m2+3=0.(*)
此时x0=-=-,y0=kx0+m=,所以P.
得Q(4,4k+m).
假设平面内存在定点M满足条件,由图形对称性知,点M必在x轴上.
设M(x10),则·=0对满足(*)式的m,k恒成立.
因为=(4-x14k+m),
·=0,得--4x1+3=0,
整理,得(4x1-4)-4x1+3=0.(**),方程无解.
故不存在定点M,使得以PQ为直径的圆恒过点M.
审题引导:(1)建立方程组求解参数a,b,c;(2)恒成立问题的求解;(3)探索性问题的一般解题思路.
规范解答:解:(1)因为AB+AF2+BF2=8,
即AF1+F1B+AF2+BF2=8,(1分)
又AF1+AF2=BF1+BF2=2a,(2分)
所以4a=8,a=2.又因为e=,即,所以c=1,(3分)
所以b=.故椭圆E的方程是=1.(4分)
(2)由消去y得(4k2+3)x2+8kmx+4m2-12=0.(5分)
因为动直线l与椭圆E有且只有一个公共点P(x0,y0),所以m≠0且Δ=0,(6分)
即64k2m2-4(4k2+3)(4m2-12)=0,化简得4k2-m2+3=0.(*)(7分)
此时x0=-=-,y0=kx0+m=,所以P.(8分)
得Q(4,4k+m).(9分)
假设平面内存在定点M满足条件,由图形对称性知,点M必在x轴上.(10分)
设M(x10),则·=0对满足(*)式的m,k恒成立.
因为=(4-x14k+m),
·=0,得--4x1+3=0,
整理,得(4x1-4)-4x1+3=0.(**)(12分)
由于(**)式对满足(*)式的m,k恒成立,所以解得x1=1.(13分)
故存在定点M(1,0),使得以PQ为直径的圆恒过点M.(14分)
错因分析:本题易错之处是忽视定义的应用;在处理第(2)问时,不清楚圆的对称性,从而不能判断出点M必在x轴上.同时不会利用恒成立求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网