题目内容

【题目】已知函数f(x)=ax2﹣blnx在点(1,f(1))处的切线为y=1.
(Ⅰ)求实数a,b的值;
(Ⅱ)是否存在实数m,当x∈(0,1]时,函数g(x)=f(x)﹣x2+m(x﹣1)的最小值为0,若存在,求出m的取值范围;若不存在,说明理由;
(Ⅲ)若0<x1<x2 , 求证: <2x2

【答案】解:(Ⅰ)由f(x)=ax2﹣blnx,得:

∵函数f(x)=ax2﹣blnx在点(1,f(1))处的切线为y=1,
,解得a=1,b=2;
(II)由(Ⅰ)知,f(x)=x2﹣2lnx,
∴g(x)=f(x)﹣x2+m(x﹣1)=m(x﹣1)﹣2lnx,x∈(0,1],

①当m≤0时,g′(x)<0,
∴g(x)在(0,1]上单调递减,
∴g(x)min=g(1)=0.
②当0<m≤2时,
∴g(x)在(0,1]上单调递减,
∴g(x)min=g(1)=0.
③当m>2时,g′(x)<0在 上恒成立,g′(x)>0在 上恒成立,
∴g(x)在 上单调递减,在 上单调递增.

∴g(x)min≠0.
综上所述,存在m满足题意,其范围为(﹣∞,2];
(III)证明:由(II)知,m=1时,g(x)=x﹣1﹣2lnx在(0,1)上单调递减,
∴x∈(0,1)时,g(x)>g(1)=0,
即x﹣1>2lnx.
∵0<x1<x2
∴0<


∵lnx2>lnx1

【解析】(Ⅰ)求出原函数的导函数,由f(1)=1且f′(1)=0联立求得a,b的值;(Ⅱ)把(Ⅰ)中求得的f(x)的解析式代入g(x)=f(x)﹣x2+m(x﹣1),求其导函数,然后对m分类分析导函数的符号,得到原函数的单调性,求出最小值.特别当m>2时,g(x)在 上单调递减,在 上单调递增,求出g(x)的最小值小于0.则m的取值范围可求;(Ⅲ)由(II)知,m=1时,g(x)=x﹣1﹣2lnx在(0,1)上单调递减,得到x﹣1>2lnx,由0<x1<x2得到
0< ,代入x﹣1>2lnx证得答案.
【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网