题目内容

【题目】已知定义在R上的函数y=f(x)的导函数为f′(x),满足f′(x)<f(x),且f(0)=1,则不等式f(x)<ex的解集为(
A.(﹣∞,e4
B.(e4 , +∞)
C.(﹣∞,0)
D.(0,+∞)

【答案】D
【解析】解:设g(x)= (x∈R), 则g′(x)=
∵f′(x)<f(x),
∴f′(x)﹣f(x)<0
∴g′(x)<0,
∴y=g(x)在定义域上单调递减
∵f(x)<ex
∴g(x)<1
又∵g(0)= =1
∴g(x)<g(0)
∴x>0
故选:D.
【考点精析】关于本题考查的基本求导法则,需要了解若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网