题目内容
【题目】已知函数f(x)= ,数列{an}满足a1=1,an+1=f( ),n∈N* .
(1)求数列{an}的通项公式;
(2)令bn= (n≥2),b1=3,Sn=b1+b2++bn , 若Sn< 对一切n∈N*成立,求最小正整数m.
【答案】
(1)解:∵f(x)= ,数列{an}满足a1=1,
∴ = ,
∴{an}是首项为1,公差为 的等差数列,
∴ .
(2)解:当n≥2时,
bn= = = ,
当n=1时,b1=3,代入上式成立,
∴Sn=b1+b2++bn
=
= ,
∵Sn< ,∴ 对一切n∈N*成立,
又 沿n递增,且 ,
∴ ,∴m≥2013,
∴最小正整数m为2013.
【解析】(1)由已知条件得 = ,由此能求出 .(2)当n≥2时,bn= = = ,当n=1时,b1=3,代入上式成立,由此利用裂项求和法结合已知条件得到 对一切n∈N*成立,由此能求出最小正整数m为2013.
【考点精析】通过灵活运用数列的前n项和,掌握数列{an}的前n项和sn与通项an的关系即可以解答此题.
练习册系列答案
相关题目