题目内容
【题目】函数y=f(x)是定义在a,b上的增函数,其中a,b∈R且0<b<﹣a,已知y=f(x)无零点,设函数F(x)=f2(x)+f2(﹣x),则对于F(x)有以下四个说法:
①定义域是[﹣b,b];②是偶函数;③最小值是0;④在定义域内单调递增.
其中正确的有(填入你认为正确的所有序号)
【答案】①②
【解析】解:根据题意,依次分析4个命题:
对于①,对于F(x)=f2(x)+f2(﹣x),有a≤x≤b,a≤﹣x≤b,
而又由0<b<﹣a,则F(x)=f2(x)+f2(﹣x)中,x的取值范围是﹣b≤x≤b,即其定义域是[﹣b,b],则①正确;
对于②,F(﹣x)=f2(﹣x)+f2(x)=F(x),且其定义域为[﹣b,b],关于原点对称,
则F(x)为偶函数,②正确;
对于③,由y=f(x)无零点,假设f(x)=2x , F(x)=22x+2﹣2x=22x+ ≥2,其最小值为2,故③错误;
对于④,由于F(x)是偶函数,则F(x)在[﹣b,0]上与[0,b]上的单调性相反,故F(x)在其定义域内不会单调递增,④错误;
所以答案是①②.
【考点精析】根据题目的已知条件,利用函数的定义域及其求法和函数的值域的相关知识可以得到问题的答案,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.