题目内容
【题目】设集合S={A0 , A1 , A2 , A3},在S上定义运算⊕:Ai⊕Aj=Ak , 其中k为i+j被4除的余数,i,j=0,1,2,3,则使关系式(Ai⊕Ai)⊕Aj=A0成立的有序数对(i,j)的组数为( )
A.4
B.3
C.2
D.1
【答案】A
【解析】解:当Ai=A0时,(Ai⊕Ai)⊕Aj=(A0⊕A0)⊕Aj=A0⊕Aj=Aj=A0 , ∴j=0
当Ai=A1时,(Ai⊕Ai)⊕Aj=(A1⊕A1)⊕Aj=A2⊕Aj=A0 , ∴j=2
当Ai=A2时(Ai⊕Ai)⊕Aj=(A2⊕A2)⊕Aj=A0⊕Aj=A0 , ∴j=0
当Ai=A3时(Ai⊕Ai)⊕Aj=(A3⊕A3)⊕Aj=A2⊕Aj=A0=,∴j=2
∴使关系式(Ai⊕Ai)⊕Aj=A0成立的有序数对(i,j)的组数为4组.
故选A.
【考点精析】通过灵活运用元素与集合关系的判断,掌握对象与集合的关系是,或者,两者必居其一即可以解答此题.
练习册系列答案
相关题目
【题目】某学校制定学校发展规划时,对现有教师进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如表:
学历 | 35岁以下 | 35至50岁 | 50岁以上 |
本科 | 80 | 30 | 20 |
研究生 | x | 20 | y |
(Ⅰ)用分层抽样的方法在35至50岁年龄段的教师中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有l人的学历为研究生的概率;
(Ⅱ)在该校教师中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取l人,此人的年龄为50岁以上的概率为 ,求x、y的值.