题目内容
19.已知cosα=$\frac{12}{13}$,α∈($\frac{3π}{2}$,2π),tanβ=$\frac{4}{3}$,β∈(0,π),求cos(α-β)的值.分析 由角的范围及同角三角函数关系式可求sinα,cosβ,sinβ的值,利用两角差的余弦函数公式即可求值.
解答 解:∵cosα=$\frac{12}{13}$,α∈($\frac{3π}{2}$,2π),
∴可得sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{5}{13}$,
∵tanβ=$\frac{4}{3}$>0,β∈(0,π),
∴β∈(0,$\frac{π}{2}$),
∴cosβ=$\sqrt{\frac{1}{1+ta{n}^{2}β}}$=$\frac{3}{5}$,sinβ=$\sqrt{1-co{s}^{2}β}$=$\frac{4}{5}$,
∴cos(α-β)=cosαcosβ+sinαsinβ=$\frac{12}{13}×\frac{3}{5}+(-\frac{5}{3})×\frac{4}{5}$=$\frac{16}{65}$.
点评 本题主要考查了同角三角函数关系式,两角差的余弦函数公式的应用,属于基础题.
练习册系列答案
相关题目
11.设x,y满足约束条件$\left\{{\begin{array}{l}{x≥0}\\{y≥0}\\{2x+3y≤2}\end{array}}\right.$,则目标函数z=$\frac{y+1}{x+1}$的最小值为( )
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | -2 |
8.已知某次期中考试中,甲、乙两组学生的数学成绩如下:则下列结论正确的是( )
甲:88 100 95 86 95 91 84 74 92 83
乙:93 89 81 77 96 78 77 85 89 86.
甲:88 100 95 86 95 91 84 74 92 83
乙:93 89 81 77 96 78 77 85 89 86.
A. | $\overline{x}$甲>$\overline{x}$乙,s甲>s乙 | B. | $\overline{x}$甲>$\overline{x}$乙,s甲<s乙 | C. | $\overline{x}$甲<$\overline{x}$乙,s甲>s乙 | D. | $\overline{x}$甲<$\overline{x}$乙,s甲<s乙 |