题目内容

【题目】甲、乙两所学校高三年级分别有600人,500人,为了解两所学校全体高三年级学生在该地区五校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

3

4

7

14

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

17

x

4

2

乙校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

1

2

8

9

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

10

10

y

4


(1)计算x,y的值;
(2)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写下面的2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异;
(3)若规定考试成绩在[120,150]内为优秀,现从已抽取的110人中抽取两人,要求每校抽1人,所抽的两人中有人优秀的条件下,求乙校被抽到的同学不是优秀的概率.

甲校

乙校

总计

优秀

非优秀

总计

参考公式:K2= ,其中n=a+b+c+d.
临界值表:

P(K2≥k0

0.10

0.05

0.010

k0

2.706

3.841

6.635

【答案】
(1)解:从甲校抽取110× =60(人),

从乙校抽取110× =50(人),故x=9,y=6


(2)解:表格填写如下:

甲校

乙校

总计

优秀

15

20

35

非优秀

45

30

75

总计

60

50

110

k2=

故有90%的把握认为两个学校的数学成绩有差异


(3)解:设两校各取一人,有人优秀为事件A,乙校学生不优秀为事件B,根据条件概率,则所求事件的概率=
【解析】(1)根据条件知道从甲校和乙校各自抽取的人数,做出频率分布表中的未知数;(2)根据所给的条件写出列联表,根据列联表做出观测值,把观测值同临界值进行比较,得到有90%的把握认为两个学校的数学成绩有差异;(3)设两校各取一人,有人优秀为事件A,乙校学生不优秀为事件B,根据条件概率,可得结论.

练习册系列答案
相关题目

【题目】已知函数.

(1)判断并证明函数的奇偶性;

(2)判断当时函数的单调性,并用定义证明;

(3)若定义域为,解不等式.

【答案】(1)奇函数(2)增函数(3)

【解析】试题分析:1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数在(-11)为单调函数,

原不等式变形为f(2x-1)<-f(x),f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。

试题解析:1)函数为奇函数.证明如下:

定义域为

为奇函数

2)函数在(-11)为单调函数.证明如下:

任取,则

在(-11)上为增函数

3由(1)、(2)可得

解得:

所以,原不等式的解集为

点睛

(1)奇偶性:判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。

(2)单调性:利函数单调性定义证明单调性,按假设,作差,化简,定号,下结论五个步骤。

型】解答
束】
22

【题目】已知函数.

(1)若的定义域和值域均是,求实数的值;

(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;

(3)若,且对任意的,都存在,使得成立,求实数的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网