题目内容

【题目】在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D一个平面角.

(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;
(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.

【答案】
(1)证明:∵在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D一个平面角,

∴PA⊥AB,PA⊥AD,

又AB∩AD=A,∴PA⊥平面ABCD,

∵BD⊥PA,

∵四边形ABCD是菱形,∴AC⊥BD,

∵AC∩PA=A,∴BD⊥平面PAC


(2)解:直线l不能与平面ABCD平行.

理由如下:

∵四边形ABCD是梯形,且平面PAB∩平面PCD=l,

∴CD与AB有交点P,∴P∈l,

∴直线l∩平面ABCD=P,

∴直线l不能与平面ABCD平行.


【解析】(1)由已知得PA⊥AB,PA⊥AD,从而BD⊥PA,由四边形ABCD是菱形,得AC⊥BD,由此能证明BD⊥平面PAC.(2)由四边形ABCD是梯形,且平面PAB∩平面PCD=l,得CD与AB有交点P,从而直线l∩平面ABCD=P,由此得到直线l不能与平面ABCD平行.
【考点精析】通过灵活运用直线与平面平行的判定和直线与平面垂直的判定,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网