题目内容
若a、b是两个非零向量,且|a|=|b|=λ|a+b|,λ∈
,则b与a-b的夹角的取值范围是 .
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421189574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421205737.png)
设b与a-b的夹角为θ,
∵λ|a+b|=|b|,|a|=|b|,
∴λ2(a2+2a·b+a2)=a2,
∴a·b=
a2,
又|a-b|2=a2-2a·b+a2
=2a2-
a2
=(4-
)a2.
而cos θ=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421267711.png)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421283653.png)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240414212991408.png)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421299774.png)
=-![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421314681.png)
=-
.
由
≤λ≤1得1≤
≤3,
∴-
≤-
≤-
,
∴-
≤cos θ≤-
,
∴
≤θ≤
.
∵λ|a+b|=|b|,|a|=|b|,
∴λ2(a2+2a·b+a2)=a2,
∴a·b=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421236780.png)
又|a-b|2=a2-2a·b+a2
=2a2-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421236749.png)
=(4-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421252421.png)
而cos θ=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421267711.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421283653.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240414212991408.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421299774.png)
=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421314681.png)
=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421330698.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421345419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421252421.png)
∴-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421361453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421330698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421392338.png)
∴-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421361453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421392338.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421439462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041421439467.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目