题目内容
【题目】如图,在直三棱柱中,已知,,,.是线段的中点.
(1)求直线与平面所成角的正弦值;
(2)求二面角的大小的余弦值.
【答案】(1)(2)
【解析】
试题(1)利用空间向量研究线面角,首先建立恰当空间直角坐标系,设立各点坐标,利用方程组求面的法向量,最后利用向量数量积求夹角余弦值的绝对值,也是线面角的正弦值(2)利用空间向量研究二面角,首先建立恰当空间直角坐标系,设立各点坐标,利用方程组求两个平面的法向量,最后利用向量数量积求夹角余弦值,根据图形确定二面角的大小的余弦值与夹角余弦值之间关系.
试题解析:因为在直三棱柱中,,所以分别以、、所在的直线为轴、轴、轴,建立空间直角坐标系,
则,
因为是的中点,所以,
(1)因为,设平面的法向量,
则,即,取,
所以平面的法向量,而,
所以,
所以直线与平面所成角的正弦值为;
(2),,设平面的法向量,
则,即,取,平面的法向量,
所以,
二面角的大小的余弦值.
练习册系列答案
相关题目