题目内容
【题目】下列判断:
①从个体编号为1,2,…,1000的总体中抽取一个容量为50的样本,若采用系统抽样方法进行抽取,则分段间隔应为20;
②已知某种彩票的中奖概率为 ,那么买1000张这种彩票就一定会中奖(假设该彩票有足够的张数);
③从装有2个红球和2个黒球的口袋内任取2个球,恰有1个黒球与恰有2个黒球是互斥但不对立的两个事件;
④设具有线性相关关系的变量的一组数据是(1,3),(2,5),(3,6),(6,8),则它们的回归直线一定过点(3, ).
其中正确的序号是( )
A.①、②、③
B.①、③、④
C.③、④
D.①、③
【答案】B
【解析】解:①从个体编号为1,2,…,1000的总体中抽取一个容量为50的样本,若采用系统抽样方法进行抽取,则分段间隔应为 =20,正确;
②已知某种彩票的中奖概率为 ,那么买1000张这种彩票可能会中奖(假设该彩票有足够的张数),不正确;
③从装有2个红球和2个黒球的口袋内任取2个球,取法情况包括:2个都是红球;2个都是黑球;1个红球,1个黑球三类.恰有1个黒球与恰有2个黒球互斥不对立,正确;
④设具有线性相关关系的变量的一组数据是(1,3),(2,5),(3,6),(6,8),则它们的回归直线一定过点(3, ),正确.
故选:B.
对4个选项分别进行判断,即可得出结论.
【题目】在“一带一路”的建设中,中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料下表:
井号I | 1 | 2 | 3 | 4 | 5 | 6 |
坐标 | ||||||
钻探深度 | 2 | 4 | 5 | 6 | 8 | 10 |
出油量 | 40 | 70 | 110 | 90 | 160 | 205 |
(1)在散点图中号旧井位置大致分布在一条直线附近,借助前5组数据求得回归线方程为,求,并估计的预报值;
(2)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(1)中的值之差(即: )不超过10%,则使用位置最接近的已有旧井,否则在新位置打井,请判断可否使用旧井?(参考公式和计算结果: )
(3)设出油量与钻探深度的比值不低于20的勘探井称为优质井,在原有井号的井中任意勘探3口井,求恰好2口是优质井的概率.