题目内容

【题目】若定义在R上的函数f(x)满足:
①对任意x,y∈R,都有:f(x+y)=f(x)+f(y)﹣1;
②当x<0时,f(x)>1.
(Ⅰ)试判断函数f(x)﹣1的奇偶性;
(Ⅱ)试判断函数f(x)的单调性;
(Ⅲ)若不等式f(a2﹣2a﹣7)+ >0的解集为{a|﹣2<a<4},求f(5)的值.

【答案】解:(Ⅰ)令y=﹣x,f(0)=f(x)+f(﹣x)﹣1x=y=0得f(0)=1
即f(﹣x)﹣1=﹣[f(x)﹣1],
∴f(x)﹣1是奇函数.
(Ⅱ)任取x1 , x2∈(﹣∞,+∞)且x1<x2 , 则f(x2)﹣f(x1)=f[(x2﹣x1)+x1]﹣f(x1)=f(x2﹣x1)+f(x1)﹣1﹣f(x1)=f(x2﹣x1)﹣1
又x1﹣x2<0.则f(x1﹣x2)>1,
∴f(x1﹣x2)﹣1>0,
∴f(x2)﹣f(x1)<0
即:f(x2)<f(x1).
∴f(x)在(﹣∞,∞)上单调递减.
(Ⅲ) 由(Ⅱ)知:a2﹣2a﹣7<m的解集为(﹣2,4),
∴m=1.即:
∴f(2)=﹣2f(4)=﹣5
【解析】(Ⅰ)令y=﹣x,f(0)=f(x)+f(﹣x)﹣1x=y=0得f(0)=1,再由函数奇偶性的定义验证f(﹣x)﹣1与﹣[f(x)﹣1]的关系,即可;(Ⅱ)任取x1 , x2∈(﹣∞,+∞)且x1<x2 , 求f(x2)﹣f(x1)的差的符号,有定义法判断出单调性;(Ⅲ)由题设,将 ,再由单调性得出不等式,求出参数,再求函数值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网