题目内容

等差数列{an}的前n项和为Sn,已知S3=,且S1,S2,S4成等比数列,
(1)求数列{an}的通项公式.
(2)若{an}又是等比数列,令bn= ,求数列{bn}的前n项和Tn.

(1)an=3或an="2n-1;" (2)Tn= 

解析试题分析:(1)首先根据等差数列的性质,把已知条件转化为关于a2的方程,解出a2的值,然后再根据等比数列的性质,结合已知条件列出关于a2、d的方程,求出公差d即可求出通项公式;(2)求出Sn的表达式,利用裂项法求和.
试题解析:(1)设数列{an}的公差为d,由S3=,可得3a2=,解得a2=0或a2=3.
由S1,S2,S4成等比数列,可得 ,由,故 .
若a2=0,则,解得d=0.此时Sn=0.不合题意;
若a2=3,则,解得d=0或d=2,此时an=3或an=2n-1.
(2)若{an}又是等比数列,则Sn=3n,所以bn=== ,
故Tn=(1- )+( )+()+…+()=1-=.
考点:1.等差数列和等比数列的性质;2.等差数列的通项公式;3.数列的前n项和求法—裂项法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网