题目内容
【题目】已知函数.
(1)讨论函数的单调性;
(2)若函数,当且,求证:.
【答案】(1)当时在递增;当时增区间为;减区间为.(2)证明见解析.
【解析】
(1)根据函数解析式,求得定义域及导函数,讨论的取值情况,即可判断导函数符号,进而可得函数的单调区间;
(2)将代入解析式,并将两个解析式代入不等式化简可得.当易证不等式成立,当时,结合可将不等式化为,构造函数,并求得,再构造函数,并求得.根据零点存在定理可证明存在使得,即在上单调递减,在上单调递增;由,,可证明的单调情况,进而可知在处取得最小值,即证明即可证明成立.
(1)函数.
函数定义域为,
当时,可知,所以在单调递增;
当时,令,
解得,
所以当时,;
当时;
故此时单调增区间为;单调减区间为;
综上所述:当时在递增;
当时增区间为;减区间为.
(2)证明:将代入函数解析式可得,,定义域为,
要证,即证,
①当时,,,不等式显然成立,
②当时,,结合已知可得,,
于是转化为,即证,
令,则,
令,则,且在上单调递增,
∵,,存在使得,即,
∴在上单调递减,在上单调递增,
又,,
故当时,,单调递减,
当时,,单调递增,
∴,
故,得证.
练习册系列答案
相关题目
【题目】随着我国经济的发展,居民收入逐年增长.某地区2014年至2018年农村居民家庭人均纯收入(单位:千元)的数据如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 |
人均纯收入 | 5 | 4 | 7 | 8 | 10 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析2014年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测2019年该地区农村居民家庭人均纯收入为多少?
附:回归直线的斜率和截距的最小二乘估计公式分别为,.