题目内容
【题目】关于函数f(x)=有如下四个命题:
①f(x)的图像关于y轴对称.
②f(x)的图像关于原点对称.
③f(x)的图像关于直线x=对称.
④f(x)的最小值为2.
其中所有真命题的序号是__________.
【答案】②③
【解析】
利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.
对于命题①,,
,则
,
所以,函数的图象不关于
轴对称,命题①错误;
对于命题②,函数的定义域为
,定义域关于原点对称,
,
所以,函数的图象关于原点对称,命题②正确;
对于命题③,,
,则
,
所以,函数的图象关于直线
对称,命题③正确;
对于命题④,当时,
,则
,
命题④错误.
故答案为:②③.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:
实施项目 | 种植业 | 养殖业 | 工厂就业 | 服务业 |
参加用户比 | ||||
脱贫率 |
那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )
A.B.
C.
D.
【题目】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 | [0,200] | (200,400] | (400,600] |
1(优) | 2 | 16 | 25 |
2(良) | 5 | 10 | 12 |
3(轻度污染) | 6 | 7 | 8 |
4(中度污染) | 7 | 2 | 0 |
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 | 人次>400 | |
空气质量好 | ||
空气质量不好 |
附:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
【题目】“网购”已经成为我们日常生活中的一部分,某地区随机调查了100名男性和100名女性在“双十一”活动中用于网购的消费金额,数据整理如下:
男性消费金额频数分布表
消费金额 (单位:元) | 0~500 | 500~1000 | 1000~1500 | 1500~2000 | 2000~3000 |
人数 | 15 | 15 | 20 | 30 | 20 |
(1)试分别计算男性、女性在此活动中的平均消费金额;
(2)如果分别把男性、女性消费金额与中位数相差不超过200元的消费称作理性消费,试问是否有5成以上的把握认为理性消费与性别有关.
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |