题目内容
【题目】在直角坐标系中,曲线的参数方程为为参数.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)当时,是什么曲线?
(2)当时,求与的公共点的直角坐标.
【答案】(1)曲线表示以坐标原点为圆心,半径为1的圆;(2).
【解析】
(1)利用消去参数,求出曲线的普通方程,即可得出结论;
(2)当时,,曲线的参数方程化为为参数),两式相加消去参数,得普通方程,由,将曲线化为直角坐标方程,联立方程,即可求解.
(1)当时,曲线的参数方程为为参数),
两式平方相加得,
所以曲线表示以坐标原点为圆心,半径为1的圆;
(2)当时,曲线的参数方程为为参数),
所以,曲线的参数方程化为为参数),
两式相加得曲线方程为,
得,平方得,
曲线的极坐标方程为,
曲线直角坐标方程为,
联立方程,
整理得,解得或(舍去),
,公共点的直角坐标为.
练习册系列答案
相关题目