题目内容
【题目】已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤f(x).
(1)证明:当x≥0时,f(x)≤(x+c)2;
(2)若对满足题设条件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
【答案】(1)见解析(2)
【解析】(1)易知f′(x)=2x+b.由题设,对任意的x∈R,2x+b≤x2+bx+c,即x2+(b-2)x+c-b≥0恒成立,所以(b-2)2-4(c-b)≤0,从而c≥+1.于是c≥1,
且c≥2 =|b|,因此2c-b=c+(c-b)>0.
故当x≥0时,有(x+c)2-f(x)=(2c-b)x+c(c-1)≥0.即当x≥0时,f(x)≤(x+c)2.
(2)由(1)知c≥|b|.当c>|b|时,有
M≥
令t=,则-1<t<1,=2-.
而函数g(t)=2- (-1<t<1)的值域是.
因此,当c>|b|时,M的取值集合为.
当c=|b|时,由(1)知b=±2,c=2.此时f(c)-f(b)=-8或0,c2-b2=0,从而f(c)-f(b)≤ (c2-b2)恒成立.
综上所述,M的最小值为.
【题目】海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:
时刻 | 2:00 | 5:00 | 8:00 | 11:00 | 14:00 | 17:00 | 20:00 | 23:00 |
水深(米) | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
经长期观测,这个港口的水深与时间的关系,可近似用函数f(t)=Asin(ωt+)+b来描述.
(1)根据以上数据,求出函数f(t)=Asin(ωt+)+b的表达式;
(2)一条货船的吃水深度(船底与水面的距离)为4.25米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?