题目内容
【题目】已知函数f(x)ax﹣lnx(a∈R).
(1)若a=2时,求函数f(x)的单调区间;
(2)设g(x)=f(x)1,若函数g(x)在上有两个零点,求实数a的取值范围.
【答案】(1)单调递减区间为(0,1),单调递增区间为(1,+∞)(2)(3,2e]
【解析】
(1)当a=2时,求出,求解,即可得出结论;
(2)函数在上有两个零点等价于a=2x在上有两解,构造函数,,利用导数,可分析求得实数a的取值范围.
(1)当a=2时,定义域为,
则,令,
解得x1,或x1(舍去),
所以当时,单调递减;
当时,单调递增;
故函数的单调递减区间为,单调递增区间为,
(2)设,
函数g(x)在上有两个零点等价于在上有两解
令,,则,
令,,
显然,在区间上单调递增,又,
所以当时,有,即,
当时,有,即,
所以在区间上单调递减,在区间上单调递增,
时,取得极小值,也是最小值,
即,
由方程在上有两解及,
可得实数a的取值范围是.
练习册系列答案
相关题目