题目内容

四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=
6

E为PC的中点.
(1)求二面角E-AD-C的正切值;
(2)在线段PC上是否存在一点M,使PC⊥平面MBD成立?若存在,求出MC的长;若不存在,请说明理由.
(1)连AC、BD交于点O,连OE,则OEPA,从而OE⊥平面ABCD,
过点O作OF⊥AD于点F,连EF,则易证∠EFO就是所求二面角的平面角.
由ABCD是菱形,且∠ABC=120°,AB=1,得OF=
3
4

OE=
1
2
PA=
6
2

∴在Rt△OEF中,有tan∠EFO=
OE
OF
=2
2
.(5分)
(2)证明:过点B作BM⊥PC于点M,连DM,
则∵△PBC≌△PDC,∴DM⊥PC,
∴PC⊥平面MBD,在△PBC中,PB=
7
,BC=1,PC=3

cos∠PCB=
1+9-7
2•1•3
=
1
2
MC=BCcos∠PCB=
1
2

∴在PC上存在点M,且MC=
1
2
时,有PC⊥平面MBD.(10分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网