题目内容

已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.求证:
(1)C1O面A1B1D1
(2)A1C⊥面AB1D1
(3)求直线AC与平面AB1D1所成角的正切值.
证明:(1)连接A1C1,设A1C1∩B1D1=O1
连接AO1,∵ABCD-A1B1C1D是正方体
∴A1ACC1是平行四边形
∴A1C1AC且A1C1=AC(2分)
又∵O1,O分别是A1C1,AC的中点,
∴O1C1AO且O1C1=AO
∴O1C1OA是平行四边形
∴C1OAO1,AO1?平面A1B1D1,C1O?平面A1B1D1
∴C1O面A1B1D1

(2)∵CC1⊥平面A1B1C1D1
∴CC1⊥B1D1
又∵A1C1⊥B1D1
∴B1D1⊥平面A1C1C
即B1D1⊥A1C,
同理可证AB1⊥A1C,
又B1D1∩AB1=B1
∴A1C⊥面AB1D1
(3)直线AC与平面AB1D1所成的角实际上
就是正四面体ACB1D1的一条棱与一个面所成的角,
余弦值为
3
3
,从而正切值为
2
.(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网