题目内容

如图,四面体A-BCD的四个面全等,且AB=AC=2
3
,BC=4,则以BC为棱,以面BCD与面BCA为面的二面角的大小为(  )
A.arccos
1
3
B.arccos
3
3
C.
π
2
D.
3

取BC的中点为O,连接OA,OD,
因为四面体A-BCD的四个面全等,且AB=AC=2
3
,BC=4,
所以BD=CD=2
3
,AD=4,
所以OA⊥BC,OD⊥BC,
所以∠AOD为所求角.
因为AB=AC=BD=CD=2
3
,BC=4,
所以OA=OD=2
2

在△AOD中,AD=4,
所以cos∠AOD=
OA2+OD2-AD2
2AO•OD
=0,
所以∠AOD=
π
2

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网