题目内容

如图多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示).
(Ⅰ)求证:AE平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?
(Ⅰ)证明:由三视图可知:△ABE与△DCF皆为直角三角形,且AB⊥BE,DC⊥CF,
侧面矩形ABCD⊥底面直角梯形BEFC,且BC=
3
,EF=2,∠CEF=90°.
由以上可得:ABCD,BECF.
又AB?平面DCF,DC?平面DCF,∴AB平面DCF;
同理可证BE平面DCF.
又AB∩BE=B,∴平面ABE平面DCF.
∴AE平面DCF.
(Ⅱ)如图所示:
当AB=DC=6时,二面角A-EF-C的大小为60°.下面给出证明:
过点E作EM⊥CF,垂足为M,则EMBC,又BECM,
∴四边形BCME为矩形,∴EM=
3

在Rt△EFM中,sin∠EFM=
EM
EF
=
3
2
,∴∠EFM=60°.
∴∠FEM=30°.
∵∠FEC=90°,∴∠CEM=60°,FE⊥CE.
在Rt△CEM中,CE=
ME
cos60°
=2
3

∵DC⊥BC,平面ABCD⊥平面BCFE,
∴DC⊥平面BCFE,∴DC⊥EF.
又∵DC∩CE=C,∴FE⊥平面DCE,∴FE⊥DE,
∴∠DCE是二面角A-EF-C的平面角,其大小为60°.
在Rt△DCE中,DC=CEtan60°=6=AB.
故当AB的长6时,二面角A-EF-C的大小为60°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网