题目内容
【题目】已知函数.
(1)若.证明函数有且仅有两个零点;
(2)若函数存在两个零点,证明:.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)当时,函数,定义域为,利用导数分析其单调性,使在单调递减,在单调递增,进而分别计算并判断,,与零的大小比较,最后由零点的存在性定理即可确定零点的个数;
(2)由是函数的两个零点,知,进而表示,再由分析法逐步反推不等式,最后令,构造函数,由(1)的单调性分析,表示最小值并由双勾函数证得,即可得证.
(1)由题可知,定义域
当时,函数,则,(为的导函数)
单调递增
,
使.
时,单调递减;时,单调递增
所以
由双勾函数性质可知,在递减,,,且,
在上有且只有一个零点
又,且
所以在上有且只有一个零点
综上,函数有且仅有两个零点
(2)由是函数的两个零点,知
要证
需证
令
需证
令
与(1)同理得
所以
故
【题目】某城市对一项惠民市政工程满意程度(分值:分)进行网上调查,有2000位市民参加了投票,经统计,得到如下频率分布直方图(部分图):
现用分层抽样的方法从所有参与网上投票的市民中随机抽取位市民召开座谈会,其中满意程度在的有5人.
(1)求的值,并填写下表(2000位参与投票分数和人数分布统计);
满意程度(分数) | |||||
人数 |
(2)求市民投票满意程度的平均分(各分数段取中点值);
(3)若满意程度在的5人中恰有2位为女性,座谈会将从这5位市民中任选两位发言,求男性甲或女性乙被选中的概率.
【题目】2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取名学生对线上教学进行调查,其中男生与女生的人数之比为,抽取的学生中男生有人对线上教学满意,女生中有名表示对线上教学不满意.
(1)完成列联表,并回答能否有的把握认为“对线上教学是否满意 与性别有关”;
态度 性别 | 满意 | 不满意 | 合计 |
男生 | |||
女生 | |||
合计 | 100 |
(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取名学生,再在这名学生中抽取名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |