题目内容
(文)数列{an}的前n项和为Sn,a1=1,Sn=2an-1.
(1)求数列{an}的通项an;
(2)求数列{nan}的前n项和Tn.
(1)求数列{an}的通项an;
(2)求数列{nan}的前n项和Tn.
(1)∵Sn=2an-1,
∴Sn+1=2an+1-1,
∴an+1=2an+1-2an
即an+1=2an,
∵a1=1,
∴{an}是首项为1,公比为2的等比数列,
∴an=2n-1;
(2)Tn=1×20+2×21+3×22+…+n×2n-1①,
2Tn=1×21+2×22+…+(n-1)×2n-1+n×2n②,
①-②得:-Tn=(20+21+22+…+2n-1)-n×2n
=2n-1-n×2n
=-(n-1)2n-1,
∴Tn=(n-1)×2n+1.
∴Sn+1=2an+1-1,
∴an+1=2an+1-2an
即an+1=2an,
∵a1=1,
∴{an}是首项为1,公比为2的等比数列,
∴an=2n-1;
(2)Tn=1×20+2×21+3×22+…+n×2n-1①,
2Tn=1×21+2×22+…+(n-1)×2n-1+n×2n②,
①-②得:-Tn=(20+21+22+…+2n-1)-n×2n
=2n-1-n×2n
=-(n-1)2n-1,
∴Tn=(n-1)×2n+1.
练习册系列答案
相关题目