题目内容

数列{an}满足an+an+1=
1
2
,a2=1,Sn为前n项和,则S21的值为(  )
A.4B.4.5C.5D.5.5
由数列{an}满足an+an+1=
1
2
,a2=1,得a1=-
1
2
a3=-
1
2
,a2=a4=1,…
发现此数列的所有奇数项为-
1
2
,所有偶数项都为1,
利用此数列的特点可知:
S21=a1+a2+…+a21=(a1+a3+…+a21)+(a2+a4+…+a20)=11×(-
1
2
)
+1×10=4.5,
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网