题目内容
4.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b∈N*)的两个焦点F1,F2,点P是双曲线上一点,|OP|<5,|PF1|,|F1F2|,|PF2|成等比数列,则双曲线的离心率为( )A. | 2 | B. | 3 | C. | $\frac{5}{3}$ | D. | $\frac{\sqrt{5}}{2}$ |
分析 通过等比数列的性质和双曲线的定义,余弦定理推出:|OP|2=20+3b2.利用|OP|<5,b∈N,求出b的值,求出c,再由离心率公式计算即可得到.
解答 解:由题意,|PF1|、|F1F2|、|PF2|成等比数列,
可知,|F1F2|2=|PF1||PF2|,
即4c2=|PF1||PF2|,
由双曲线的定义可知|PF1|-|PF2|=4,即|PF1|2+|PF2|2-2|PF1||PF2|=16,
可得|PF1|2+|PF2|2-8c2=16…①
设∠POF1=θ,则∠POF2=π-θ,
由余弦定理可得:|PF2|2=c2+|OP|2-2|OF2||OP|cos(π-θ),
|PF1|2=c2+|OP|2-2|OF1||OP|cosθ,
|PF2|2+PF1|2=2c2+2|OP|2,…②,
由①②化简得:|OP|2=8+3c2=20+3b2.
因为|OP|<5,b∈N,所以20+3b2<25.
所以b=1.
c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$,
即有e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$.
故选:D.
点评 本题考查双曲线的定义、方程和性质,余弦定理以及等比数列的应用,是一道综合问题,考查分析问题解决问题的能力.
练习册系列答案
相关题目
19.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,俯视图是圆心角为$\frac{π}{2}$的扇形,则该几何体的侧面积为( )
A. | $\frac{1}{2}$ | B. | 1+$\frac{π}{4}$ | C. | 1+$\frac{\sqrt{2}π}{4}$ | D. | 1+$\frac{π}{4}$+$\frac{\sqrt{2}π}{4}$ |
9.设集合M={x|y=$\sqrt{x-1}$},N={x|x2<4},则(∁RM)∩N等于( )
A. | (-1,2) | B. | (-2,1) | C. | (-2,+∞) | D. | (-1,+∞) |
16.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F1关于一条渐近线的对称点P在另一条渐近线上,该双曲线的离心率为( )
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |