题目内容

16.已知函数f(x)=$\frac{ax+b}{{x}^{2}+c}$是定义在R上的奇函数,且当x=1时,f(x)取最大值1.
(1)求出a,b,c的值并写出f(x)的解析式;
(2)若x1=$\frac{1}{2}$,xn+1=f(xn),求证:$\frac{({x}_{1}-{x}_{2})^{2}}{{x}_{1}{x}_{2}}$+$\frac{({x}_{2}-{x}_{3})^{2}}{{x}_{2}{x}_{3}}$+…+$\frac{({x}_{n}-{x}_{n+1})^{2}}{{x}_{n}{x}_{n+1}}$$<\frac{5}{16}$;
(3)若x1∈(0,1),xn+1=f(xn),试比较xn+1与xn的大小并证明.

分析 (1)利用奇函数的定义得出f(0)=0,利用求解b=0,当x=1时,f(x)取最大值1,得出$\left\{\begin{array}{l}{\sqrt{c}=1}\\{\frac{a}{2\sqrt{c}}=1}\end{array}\right.$求解即可.
(2)xk+1-xk=$\frac{{x}_{k}(1-{x}_{k})(1+{x}_{k})}{1{+x}_{k}^{2}}$=xk(1-xk)$\frac{1+{x}_{k}}{1{+x}_{k}^{2}}$利用基本不等式证明,裂项放缩$\frac{({x}_{k}-{x}_{k+1})^{2}}{{x}_{k}{x}_{k+1}}$(xk+1-xk))≤$\frac{\sqrt{2}+1}{8}$($\frac{1}{{x}_{k}}$-$\frac{1}{{x}_{k+1}}$),
$\frac{({x}_{1}-{x}_{2})^{2}}{{x}_{1}{x}_{2}}$+$\frac{({x}_{2}-{x}_{3})^{2}}{{x}_{2}{x}_{3}}$+…+$\frac{({x}_{n}-{x}_{n+1})^{2}}{{x}_{n}{x}_{n+1}}$$<\frac{\sqrt{2}+1}{8}$(2-1)再放大,凑出答案$\frac{\sqrt{2}+1}{8}$(2-1)$<\frac{\frac{3}{2}+1}{8}$=$\frac{5}{16}$;
(3)判断得出xn+1<1,作差变形xn+1-xn=$\frac{2{x}_{n}}{{x}_{n}^{2}+1}$=$\frac{{x}_{n}(1-{x}_{n})(1+{x}_{n})}{{x}_{n}^{2}+1}$>0,即可判断大小.

解答 解:(1)∵函数f(x)=$\frac{ax+b}{{x}^{2}+c}$是定义在R上的奇函数;
∴f(0)=0,$\frac{b}{c}$=0,b=0;
∴f(x)=$\frac{ax}{{x}^{2}+c}$=$\frac{a}{x+\frac{c}{x}}$;
∵x$+\frac{c}{x}$≥2$\sqrt{c}$(x=$\sqrt{c}$等号成立);
∴x=$\sqrt{c}$时,f(x)取最大值=$\frac{a}{2\sqrt{c}}$;
∵当x=1时,f(x)取最大值1;
∴$\left\{\begin{array}{l}{\sqrt{c}=1}\\{\frac{a}{2\sqrt{c}}=1}\end{array}\right.$即$\left\{\begin{array}{l}{c=1}\\{a=2}\end{array}\right.$;
∴f(x)=$\frac{2x}{{x}^{2}+1}$
(2)∵0<xk<1,
∴xk+1-xk=$\frac{{x}_{k}(1-{x}_{k})(1+{x}_{k})}{1{+x}_{k}^{2}}$=xk(1-xk)$\frac{1+{x}_{k}}{1{+x}_{k}^{2}}$$≤\frac{1}{4}$×$\frac{1}{1+{x}_{k}+\frac{2}{{x}_{k}+1}-2}$$≤\frac{1}{4}$$•\frac{1}{2\sqrt{2}-2}$=$\frac{\sqrt{2}+1}{8}$
∴$\frac{({x}_{k}-{x}_{k+1})^{2}}{{x}_{k}{x}_{k+1}}$(xk+1-xk)=$\frac{({x}_{k+1}-{x}_{k})}{{x}_{k}{x}_{k+1}}$(xk+1-xk)≤$\frac{\sqrt{2}+1}{8}$($\frac{1}{{x}_{k}}$-$\frac{1}{{x}_{k+1}}$)
∴$\frac{({x}_{1}-{x}_{2})^{2}}{{x}_{1}{x}_{2}}$+$\frac{({x}_{2}-{x}_{3})^{2}}{{x}_{2}{x}_{3}}$+…+$\frac{({x}_{n}-{x}_{n+1})^{2}}{{x}_{n}{x}_{n+1}}$≤$\frac{\sqrt{2}+1}{8}$($\frac{1}{{x}_{1}}$$-\frac{1}{{x}_{2}}$$+\frac{1}{{x}_{2}}$$-\frac{1}{{x}_{3}}$$+\frac{1}{{x}_{3}}$$-\frac{1}{{x}_{4}}$$+…+\frac{1}{{x}_{n}}$$-\frac{1}{{x}_{n+1}}$)

=$\frac{\sqrt{2}+1}{8}$(2-$\frac{1}{{x}_{n+1}}$)
∵x1=$\frac{1}{2}$,xn+1>xn
∴$\frac{1}{2}$<xn+1<1,∴1$<\frac{1}{{x}_{n+1}}$<2,
∴$\frac{({x}_{1}-{x}_{2})^{2}}{{x}_{1}{x}_{2}}$+$\frac{({x}_{2}-{x}_{3})^{2}}{{x}_{2}{x}_{3}}$+…+$\frac{({x}_{n}-{x}_{n+1})^{2}}{{x}_{n}{x}_{n+1}}$$<\frac{\sqrt{2}+1}{8}$(2-1)$<\frac{\frac{3}{2}+1}{8}$=$\frac{5}{16}$;
(3)∵若x1=$\frac{1}{2}$,xn+1=f(xn);
xn+1=$\frac{2{x}_{n}}{{x}_{n}^{2}+1}$,
x1∈(0,1),∴xn+1>0,(n∈N*)
又xn+1=f(xn)≤1,且xn+1=1,则xn=1,从而x1=1,与x1∈(0,1)矛盾,
∴xn+1<1,
xn+1-xn=$\frac{2{x}_{n}}{{x}_{n}^{2}+1}$=$\frac{{x}_{n}(1-{x}_{n})(1+{x}_{n})}{{x}_{n}^{2}+1}$>0,
xn+1>xn

点评 本题综合考察了函数的性质,不等式的证明,充分利用放缩的方法求解证明,裂项方法变形代数式子,难度较大,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网