题目内容
【题目】已知函数.
(1)若在区间有最大值,求整数的所有可能取值;
(2)求证:当时, .
【答案】(1) ;(2)证明见解析.
【解析】试题分析:(1)在区间有最大值,即是在区间有极大值,求出,求出极大值点 ,令 ,从而可得结果;(2)等价于,只需证明即可.
试题解析:(1)f′(x)=(x2+x-2)ex,
当x<-2时,f′(x)>0,f(x)单调递增,
当-2<x<1时,f′(x)<0,f(x)单调递减,
当x>1时,f′(x)>0,f(x)单调递增,
由题知:a<-2<a+5,得:-7<a<-2,
则a=-6、-5、-4、-3,
当a=-6、-5、-4,显然符合题意,
若a=-3时,f(-2)=5e―2,f(2)=e2,f(-2)<f(2),不符合题意,舍去.
故整数a的所有可能取值-6,―5,-4.
(2)f(x)<-3lnx+x3+(2x2-4x)ex+7可变为(-x2+3x-1)ex<-3lnx+x3+7,
令g(x)=(-x2+3x-1)ex,h(x)=-3lnx+x3+7,
g′(x)=(-x2+x+2)ex,
0<x<2时,g′(x)>0,g(x)单调递增,
当x>2时,g′(x)<0,g(x)单调递减,
g(x)的最大值为g(2)=e2,
h′(x)=,当0<x<1时,h′(x)<0,h(x)单调递减,
当x>1时,h′(x)>0,h(x)单调递增,
h(x)的最小值为h(1)=8>e2,
g(x)的最大值小于h(x)的最小值,
故恒有g(x)<h(x),即f(x)<-3lnx+x3+(2x2-4x)ex+7.
【题目】为了解患肺心病是否与性别有关,在某医院对入院者用简单随机抽样方法抽取50人进行调查,结果如下列联表:
(Ⅰ)是否有的把握认为入院者中患肺心病与性别有关?请说明理由;
(Ⅱ)已知在患肺心病的10位女性中,有3位患胃病.现在从这10位女性中,随机选出3名进行其它方面的排查,记选出患胃病的女性人数为,求的分布列和数学期望;
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.