题目内容

【题目】给出下列四个命题:
①函数y=|x|与函数y= 表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x﹣1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
⑤设函数f(x)是在区间[a.b]上图象连续的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.
其中正确命题的序号是 . (填上所有正确命题的序号)

【答案】③⑤
【解析】解:①函数y=|x|的定义域为R,函数y= 的定义域为[0,+∞),两函数的定义域不同,不是同一函数,①错误
②函数y= 为奇函数,但其图象不过坐标原点,②错误
③将y=3x2的图象向右平移1个单位得到y=3(x﹣1)2的图象,③正确
④∵函数f(x)的定义域为[0,2],要使函数f(2x)有意义,需0≤2x≤2,即x∈[0,1],故函数f(2x)的定义域为[0,1],④错误;
⑤函数f(x)是在区间[a.b]上图象连续的函数,f(a)f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根,⑤正确;
故答案为 ③⑤
①两函数的定义域不同,不是同一函数,①错误;②举反例如函数y= ,②错误;③利用函数图象平移变换理论可知③正确;④求函数f(2x)的定义域可判断④错误;⑤由根的存在性定理可判断⑤错误.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网