题目内容

【题目】设各项都是正数的等比数列{}Sn为前n项和,且S10=10S30=70,那么S40=______

【答案】150

【解析】

根据数列{}是等比数列,Sn为前n项和,且S10=10≠0可得,S10,S20﹣S10,S30﹣S20,S40﹣S30也成等比数列,即可得到结果.

根据数列{}是等比数列,Sn为前n项和,且S10=10≠0可得数列S10,S20﹣S10,S30﹣S20,S40﹣S30成等比数列,

因此有(S20﹣S102=S10(S30﹣S20),即(S20﹣10)2=10(70﹣S20),

故S20=﹣20或S20=30,又 S20>0,因此S20=30,S20﹣S10=20,S30﹣S20=40,

故S40﹣S30=80,S40=150.

故答案为:150.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网