题目内容
【题目】若数列{}的前n项和Sn=2-2.
(1)求数列{}的通项公式;
(2)若bn=log,Sn=b1+b2+…+bn,对任意正整数n,Sn+(n+m)<0恒成立,试求实数m的取值范围.
【答案】(1)= ;(2)
【解析】
(1)运用数列的递推式和等比数列的定义和通项公式,即可得到所求;
(2)求得bn=2nlog2n=﹣n2n,由数列的错位相减法求和,可得Sn,再由不等式恒成立思想和不等式的性质,即可得到所求的范围.
(1)由Sn=2﹣2,得当n≥2时,Sn﹣1=2﹣2,两式相减,得=2﹣2,
∴当n≥2时,=2,又n=1时,S1=a1=2a1﹣2,a1=2,
则{}是首项为2,公比为2的等比数列,∴=2n.
(2)bn=2nlog2n=﹣n2n,
∴﹣Sn=1×2+2×22+3×23+…+n2n,①
∴﹣2Sn=1×22+2×23+…+(n﹣1)2n+n2n+1,②
①﹣②,得Sn=2+22+23+…+2n﹣n2n+1=﹣n2n+1=2n+1﹣n2n+1﹣2.
由Sn+(n+m)an+1<0,得2n+1﹣n×2n+1﹣2+n×2n+1+m×2n+1<0对任意正整数n恒成立,
∴m2n+1<2﹣2n+1,即m<﹣1对任意正整数n恒成立.∵﹣1>﹣1,
∴m≤﹣1,即m的取值范围是(﹣∞,﹣1].
【题目】下表中提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的四组对应数据.
6 | 8 | 10 | 12 | |
2.5 | 3 | 4 | 4.5 |
(1)根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技改前100吨甲产品的生产能耗为45吨标准煤,试根据(1)中的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.