题目内容
【题目】设等差数列{an}的前n项和为Sn , 已知a3=3,S11=0.
(1)求数列{an}的通项公式;
(2)当n为何值时,Sn最大,并求Sn的最大值.
【答案】
(1)解:由等差数列的求和公式和性质可得:
S11=11×a6=0,
解得a6=2,
又∵a3=3,
故数列{an}的公差d=﹣1,
故an=a3+(n﹣3)×﹣1=6﹣n
(2)解:由(1)得a1=5,
故Sn=a1n+ = n2+ ,
故当n=5,或6时,Sn最大,
Sn的最大值为15
【解析】(1)由题意可得得a6=2,进而求出公差d,代入可得{an}的通项公式; (2)求出前n项和为Sn的表达式,进而根据二次函数的图像和性质得到Sn的最大值.
【考点精析】认真审题,首先需要了解等差数列的性质(在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列).
练习册系列答案
相关题目
【题目】2016年高一新生入学后,为了了解新生学业水平,某区对新生进行了水平测试,随机抽取了50名新生的成绩,其相关数据统计如下:
分数段 | 频数 | 选择题得分24分以上(含24分) |
5 | 2 | |
10 | 4 | |
15 | 12 | |
10 | 6 | |
5 | 4 | |
5 | 5 |
(Ⅰ)若从分数在, 的被调查的新生中各随机选取2人进行追踪调查,求恰好有2名新生选择题得分不足24分的概率;
(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为,求随机变量的分布列和数学期望.