题目内容

【题目】设等差数列{an}的前n项和为Sn , 已知a3=3,S11=0.
(1)求数列{an}的通项公式;
(2)当n为何值时,Sn最大,并求Sn的最大值.

【答案】
(1)解:由等差数列的求和公式和性质可得:

S11=11×a6=0,

解得a6=2,

又∵a3=3,

故数列{an}的公差d=﹣1,

故an=a3+(n﹣3)×﹣1=6﹣n


(2)解:由(1)得a1=5,

故Sn=a1n+ = n2+

故当n=5,或6时,Sn最大,

Sn的最大值为15


【解析】(1)由题意可得得a6=2,进而求出公差d,代入可得{an}的通项公式; (2)求出前n项和为Sn的表达式,进而根据二次函数的图像和性质得到Sn的最大值.
【考点精析】认真审题,首先需要了解等差数列的性质(在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网